A New Approach to -Bernoulli Numbers and -Bernoulli Polynomials Related to -Bernstein Polynomials
نویسندگان
چکیده
منابع مشابه
A new approach to Bernoulli polynomials
Six approaches to the theory of Bernoulli polynomials are known; these are associated with the names of J. Bernoulli [2], L. Euler [4], E. Lucas [8], P. E. Appell [1], A. Hürwitz [6] and D. H. Lehmer [7]. In this note we deal with a new determinantal definition for Bernoulli polynomials recently proposed by F. Costabile [3]; in particular, we emphasize some consequent procedures for automatic c...
متن کاملCongruences concerning Bernoulli numbers and Bernoulli polynomials
Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...
متن کاملOn Bernoulli Sums and Bernstein Polynomials
In the paper we discuss a technology based on Bernstein polynomials of asymptotic analysis of a class of binomial sums that arise in information theory. Our method gives a quick derivation of required sums and can be generalized to multinomial distributions. As an example we derive a formula for the entropy of multinomial distributions. Our method simplifies previous work of Jacquet, Szpankowsk...
متن کاملIdentities of Bernoulli Numbers and Polynomials
In the field of Laurent series Q((T)), the series B = T/(e T − 1) is contained in the formal power series ring Q[[T ]]. The i-th Bernoulli number B
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2010
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2010-951764